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Challenges for development of
Chemoinformatics models

Public datasets
• Limited data availability,

data are expensive
• Data are noisy,

inconsistent between
laboratories (not all
conditions
controlled/specified)

• No new measurements
can be easily made

• Data are heterogenous

In house datasets
• Data are consistent (at least

within each company site)
• Data are homogeneous and

may correspond just to few
series of interest

• New data can be easily and
incrementally measured

• Accuracy of data may vary
depending on used
experimental protocol

• Not available for public
development



“Public” model can fail due to different
chemical diversity in training & test sets

New data (in house compounds)
to be estimated

Training set data used 
to develop a model

Our model given 
the training set

Correct model 



"One can not embrace the unembraceable.”

Possible: 1060 - 10100 molecules theoretically exist
( > 1080 atoms in the Universe)

Achievable: 1020 - 1024 can be synthesized now
(weight of the Moon is ca 1023 kg)

Available: 2*107 molecules are on the market

Measured: 102 - 104 molecules with ADME/T data

Problem: To predict ADME/T properties of just
molecules on the market we must extrapolate data
from one to 1,000 - 100,000  molecules!

Kozma Prutkov

N O

O OH

molecules on the market

We need methods whichWe need methods which
can estimate the accuracy can estimate the accuracy 
of predictionsof predictions!!

ADME/T data



Troubles with models

• Model developed using “public data”
– May have low prediction accuracy due to limited

chemical diversity of both sets (problem of accuracy)
• Model developed using “public” + “in house” data

– Difficult to receive “in house” data
– “Public data” may not be really public (problem of IP)
– May require significant computing time/expertise of the

end user
– Public/in-house data can be incompatible

• Model developed using “public” data and then “adjusted”
for molecules from “in house” data
– Associative Neural Network
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Associative Neural Network (ASNN)

 Some software tools rely just on one “best” model.
 Other software tools rely on the ensemble average (“panel of experts”).
 ASNN explores disagreement of individual models in the ensemble to

improve its accuracy and to derive a confidence score.



Bias-variance decompositionBias-variance decomposition

Variance: can be decreased using a large ensemble of
models

Bias: can be partially decreased using more flexible models
(large number of hidden neurons), early stopping,
AdaBoost algorithm, etc. (indirect methods)

Question: Can we directly estimate (and correct) the bias
of the ensemble?

Answer: Yes, if we can correctly detect nearest neighbors
of the target data case in “functional space”!
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fi - prediction of ith model;
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Sources of bias: Sources of bias: underfittingunderfitting

Sine function approximation by neural networks withSine function approximation by neural networks with
one and two hidden neurons (one and two hidden neurons (x=xx=x11+x+x22))



Sources of bias: incomplete dataSources of bias: incomplete data
(extrapolation, applicability domain)(extrapolation, applicability domain)

Gauss function extrapolation (Gauss function extrapolation (x=xx=x11+x+x22))



Correction of model bias by the error of
the nearest neighbors of the target point

f*

! 

f 



Representation of molecules
(data cases) for machine learning

• Can be defined with
calculated properties
(logP, quantum-
chemical parameters,
etc.)

• Can be defined with a
set of structural
descriptors (topological
2D, 3D, etc.).

• In general: any set of
descriptors
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Nearest neighbors in the input space
(space of descriptors)
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Nearest neighbors and activity
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x=x1+x2 !

The nearest
neighbors in  the
descriptor space are
not necessary
neighbors in the
property space!



Nearest neighbors and activity
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property are not
neighbors in
descriptor space!



A property-based similarity
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-- both molecules are the
nearest neighbors, r2=0.47, in
space of residuals amid
>12,000 molecules!

N

HO

N

HO

logP=3.11

logP=3.48

Morphinan-3-ol, 17-methyl-

Levallorphan

The property-based similarity* is
defined as correlation of ensemble

residuals

     *Tetko, I.V.; Villa, A.E.P. Neural Networks, 1997, 10, 1361-1374
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neighbors in space of
models uses invariants
in “structure- property”
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Nearest neighbors for Gauss function

All nearest neighbors
are detected correctly
using similarity in
property-based space !



Associative Neural Network (ASNN)Associative Neural Network (ASNN)

A prediction of case i: [ ] [ ] [ ]
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!
=

=
Mk

i

ki
z

M
z

,1

1

( )!
"

#+=$
)(

1

ikNj

jjkii zyzz
x

Traditional ensemble:Traditional ensemble:

<<= ASNN bias correction<<= ASNN bias correction

The correction of neural network ensemble value is performed using errors
(biases) calculated for the neighbor cases of analyzed case xxii detected in
space of neural network models (neural network associations of the given
model)



M=10 (ten models) in the ensemble [ ] [ ]

valuesalexperimentyyy

averageensemblezzz
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=• ANNEx

N=3,  three cases
{(x1,y1),(x2,y2),(x3,y3)} in the
training set:

[ ] [ ]
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ASNN result:ASNN result: 

Illustrative exampleIllustrative example
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ASNN sine function approximation
(correction of the underfitting bias)
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A) ANN trained with two (black) and one (grey) hidden
neurons. B) ASNN results using one hidden neuron
using the same networks from A).



Classification of UCI data setsClassification of UCI data sets

7.8%8.3%8.1%35-30-15-620004435Satellite

1.8%4.1%1.5%16-70-50-26400016000Letter

ASNN2ANN
50 CC2

Boosted
results1

MLP
architecture1

test settraining
set

dataset

1 - Schwenk and Bengio, Neural Computation, 12, 2000, 1867-1887.
2 - Tetko, Neural Processing Letters, 2002, 16, 187-199.



Gauss function extrapolation (correction ofGauss function extrapolation (correction of
extrapolation bias with extrapolation bias with ““fresh datafresh data””))
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Notice: x=x1+x2

LIBRARY mode: new
data are used for kNN
correction (enlargement
of the ASNN memory)
without rebuilding the
neural network model!

Advantages:
fast, no weight
retraining;
correction is not limited
by the  range of values
in the training set



ALOGPS 2.1
••LogPLogP:: 75 input variables corresponding to electronic and

topological properties of atoms (E-state indices), 12908
molecules in the database (PHYSPROP), 64 neural networks in
the ensemble. Calculated results RMSE=0.35, MAE=0.26, n=76
outliers (>1.5 log units)

•LogS: 33 input E-state indices, 1291 molecules in the database,
64 neural networks in the ensemble. Calculated results
RMSE=0.49, MAE=0.35, n=18 outliers (>1.5 log units)

• Tetko, Tanchuk & Villa, JCICS, 2001, 41, 1407-1421.
• Tetko, Tanchuk, Kasheva & Villa, JCICS, 2001, 41, 1488-1493.
• Tetko & Tanchuk, JCICS, 2002, 42, 1136-1145.

Available free at http://www.vcclab.org site. 



Nearest neighbors in different spaces

The same 74
E-state descriptors
were used

GSE of S. Yalkowsky
logS = 0.5-0.01(MP-25) - logP 



Accuracy of predictors developed using
whole set (ALOGPS) and “star” set only

 

ANN, "nova set" 

prediction 

ASNN, "nova set" used as 

LIBRARY, LOO 

 

network 

 

training 

set, N  
RMSE MAE outliers RMSE MAE outliers 

ALOGPS 12908 0.49 0.38 68 0.43 0.32 50 

ANN 

trained on 

XLOGP 

set 

1853 0.65 0.52 647 0.47 0.36 141 

ANN 

trained on 

“star” set 

9429 0.59 0.47 480 0.46 0.35 98 

 

Tetko & Tanchuk, JCICS, 2002, 42, 1136-1145.

XLOGP

1873

CLOGP

9429

PHYSPROP 12 908

star  set

nova set

Notice in  “LIBRARY” new data (nova set) were used for the
kNN corrections without rebuilding neural network models



Prediction of AstraZeneca logP set

ACDlogP (v. 7.0): MAE = 0.86, RMSE=1.20
CLOGP (v. 4.71): MAE = 0.71, RMSE=1.07
ALOGPS BLIND:  MAE = 0.60, RMSE=0.84
ALOGPS LIBRARY: MAE = 0.45, RMSE=0.68

Tetko & Bruneau, J. Pharm. Sci., 2004, 94, 3103-3110. 

n=2569



Can we predict some other similar
properties with ALOGPS, e.g. logD?

• logP is defined for neutral compounds
• logD is defined for charged compounds

logD(pH) = logP - log(1+10(pH-pKa)δi),
where δi = {1,-1} for acids and bases,
respectively

logD is more difficult to predict
a) since it can accumulate errors due to both

logP and pKa predictions
b) there is no good compilation of logD data

measured for a diverse collection of
compounds (however, a lot of data is
available commercially)



ASNN: prediction of data that are
inconsistent with the training set
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“logP” set -- 100 points; “logD” set -- 8 points, x=x1+x2



LIBRARY mode (no retraining)
.
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N.B.! Training using both “old” and “new” data will not work!!!



Library mode vs training using
“logD” data



Pallas PrologD : MAE = 1.06, RMSE=1.41
ACDlogD (v. 7.19): MAE = 0.97, RMSE=1.32
ALOGPS:     MAE = 0.92, RMSE=1.17
ALOGPS LIBRARY: MAE = 0.43, RMSE=0.64

Tetko & Poda, J. Med. Chem., 2004, 94, 5601-5604. 

“Self-learning” Pfizer logD data
using logP model (LIBRARY)
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XLOGP

1873

CLOGP

9429

PHYSPROP 12 908

star  set

nova set

PHYSPROP data set

Total:
12908

3479 training
“nova” -->
prediction
star set



Mean Average Error (MAE) as functionMean Average Error (MAE) as function
of the number of non-hydrogen atomsof the number of non-hydrogen atoms

    Methods trained
using “star” set
provided a low
prediction ability
for the “nova” set
because of  the
different
chemical
diversity in both
sets

    x - training set
performance

O - test set
performance



Estimation of the model accuracy
by the nearest neighbors

Calibration: For each query molecule we find the most similar molecule
(max correlation in the property-based space: “property-based similarity”) in
the training set. We plot prediction accuracy of the query molecules as
function of their property based similarities (calibration curve).

Usage: For each test molecule we again find the most similar molecule and
estimate its prediction accuracy using calibrated value for the actual value
of “property-based similarity” .



Prediction performance as a
function of the “property-

based” similarity
Blind prediction

“property-based similarity”:
max correlation coefficient of a test
molecule to “star” set

LIBRARY mode

“property-based similarity”:
max correlation coefficient of a test molecule
to “star” + ”nova” sets

MAE=0.28 (0.26)MAE=0.43

XLOGP

1873

CLOGP

9429

PHYSPROP 12 908

star  set

nova set
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Lipophilicity (logP) prediction of
pharma companies

Tetko, I.V. et al, Drug Discovery Today, 2006.

50% 
data

experimental 
errors

distribution 
of molecules

• We can reliably estimate which compounds can/can’t be reliably predicted.
 ASNN can save costs for measurements of up to 50% of molecules.



Estimated and calculated error for
AstraZeneca (AZ), Pfizer (PFE) and

iResearch Library sets (>1.5*107 molecules)
M

A
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Secure sharing of information
but not molecules

• Symposium organized by T. Oprea at 229th  ACS, San Diego
• Two dedicated session (CINF, COMP) ca 20 participants
• Too secure sharing makes impossible model development

(relevant information is lost)
• Less than 1 bit/atom is required to store molecules in “zip” file

(1 float value for molecule with 35 atoms)
• Thus, any proposed method can be secure ... but only until it is

“hacked”
• Sharing molecular descriptors of a target molecule is a difficult

business
• But …. let us share reliably predicted molecules!
• These are the molecules with significant high R in property

space to the target molecule



Number of molecules as a function
of the property-based similarity

The average number of molecules in respective databases with higher or
equal correlation coefficient to a molecule in the PHYSPROP database



Real and surrogate molecules

Tetko, Abagyan,Oprea
J. Comp. Aid. Mol. Des.
2005,19, 749.
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Models for logP prediction developed
with real & surrogate data

Dataset sizes
Real = surrogate = 

1949 molecules

• Take a “real” molecule from PHYSPROP logP dataset
• Find for it 100th (1000th) significantly correlated molecule r2>0.3 in

the IResearchLibrary (use additional filters to filter structurally
similar ones)

• Name it as a “surrogate” molecule, calculate for it logP value -->
“surrogate data”

• Use “real” molecules with real logP values  and “surrogate data” to
develop models

• Predict all 12908 PHYSPROP molecules using both models

N.B.! This is a 
property-specific
data sharing!!!



Conclusions
• Use of ASNN approach allows to

– Estimate bias of the model
– Correct bias of the model
– Improve accuracy of predictions
– Instantly update models with new data without retraining

global (neural network) model
• Drug discovery
• Control systems (movement)

– Allow to estimate applicability domain and accuracy of
prediction of models

• novelty detection
• detection of outlying data points
• detection of non-stationary measurements
• experimental design
• secure data sharing



Neuro-physiological roots
• Spatio-temporal coding of information processing
• A lot of correlations in the brain, fast reaction (100s ms for visual stimulus)

• A signal with maximum correlation to the stimulus from the long-term memory
will be reinforced

• Some part of the brain provides modulation (increase of excitability) of regions
that will be used for search of the proto-types and thus switching the “property-
based similarity” depending on the context of the query or/and desired action

• Explains presence of two levels of behavior
– Long term skills (fast reaction, parallel processing of information --

procedural memory)
• Genetically programmed skills
• Skills developed on the level of vegetative neural system

– Short term skills (sequential processing of information -- declarative
memory)

• Skills developed by learning from few examples, cognition, observation
of similar situation

• Used to correct the long term skills
• Following training declarative memory changes to the procedural memory
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